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Virtual Reality continuum Real world

Virtual Reality Mixed Reality Augmented Reality
(VR) (MR) (AR)

Virtual objects

credit: deltapartnersgroup.com

Immerses users in an . N Overlays digital
5 5 integrated into and .
imagined or . imagery onto the
o responsive to the
replicated world real world
real world

e Applications: entertainment, education, communications...
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-~ Virtual ' Real

e Step 1. room acoustic synthesis
e Step 2. auralization, i.e. making the sound field audible

e Rendered room acoustics in

o VR: room acoustics of virtual space
o MR/AR: room acoustics of real space
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e Rendering high-quality room acoustics is essential for

©)

O O O O O O

auditory immersion

sense of realism and presence
spaciousness

envelopment experience

effective externalization

convincing illusion of sound source distance
rendering apparent source width
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e Qverview of fundamental principles and state-of-the-art
methodologies in audio for XR:

o Synthesis of room acoustics
o |ntegration with headphones-based auralization
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Room Acoustics Synthesis
Fundamentals of Room Acoustics
Perception of Room Acoustics
Room Acoustic Models

Binaural Rendering for XR
Binaural Rendering
Integration with Synthesized Room Acoustics in XR

Examples of open-source VR/AR Audio Rendering Software
Audio360
Resonance Audio
Steam Audio

Conclusions
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Room Acoustics Synthesis
Fundamentals of Room Acoustics
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Sound propagation governed by the PDEX:

1%
P 2ot
p pressure, s source distribution, ¢ speed of sound
Initial and boundary conditions are needed to find a solution
Example boundary condition:

ZZZ = —cZ,Vp-n

n orthogonal to the boundary, Z,, wall impedance
Eguation admits closed form solution only in few cases
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e Monochromatic sound source, Helmholtz equationt®:
w 2
Ap+ (—) p
C
e Solutions for point sources:
S et
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each element of the summation is called “mode”, where w,,

modal frequencies, ,,(x) eigenfunctions, &, imaginary part of
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Modal description of reverberation (cont'd)
e Density of modes increases as f? (Kuttruff, 2000)!
o Sparse distribution of modes at low frequencies
o Qverlapping modes at high frequency into a random frequency
response

W0 00 00 40 50 @0 700 80 %0 1000
Frequency (Hz]

e Transition - Schroeder frequency [Schroeder, 19621
= 2000,/

Examples

Bathroom V = 10m3, Tyo = 0.35 s = F, = 374 Hz

Concert hall V = 2700m3, Tgo =2 s = F, = 54 Hz
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Acoustic Impulse Response (AIR)

e Acoustic impulse response is (time-domain) solution of wave
equation for impulsive sound source
e Response to any input is obtained via convolution with AIR

(Rational Acoustics)

Components of AIR h(t) in rooms
Direct line-of-sight (LOS)

Early reflections: sparse low order reflections
Late reverb: dense, higher order reflections, from all directions
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High level characteristics of AIR

Mixing time
Transition between early reflections and late reverb

Reverberation time (T60)

Time taken for cumulative sound energy to decay 60 dB below
its initial level

Direct-to-reverberant Energy Ratio (DRR)
The ratio of the energies of early reflections and late reverb

Critical distance (Reverberation radius)

The distance at which energies of the direct sound and
reverberation are equal

Affects speech intelligibility
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Link here to: https://youtu.be/hWaDaB2B9i8
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Distance attenuation

Spherical spreading; inverse square law; 6 dB drop far every
doubling of distance

Air absorption

Heat losses due to friction and relaxation processes; frequency
dependent
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Specular Diffuse Reflection

Reflection (Scattering)
\ / N\,
(Sonography folder)

e Sound wave hitting a boundary will generate a specular
reflection and, depending on the material, @ more or less
energetic diffuse reflection

e |n the process, energy will be lost, with losses dependent on
material and on frequency
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|
| Direct path

M ‘ | ‘ Early reflections
®
& h Late reverberation

Figure adapted from Behler, 2006 4

e Real sound sources are never omnidirectional

e Depending on the position of observation the direct path level
and the ER pattern will change

e Critical distance: 7, ~ 0.1(gV/xT)z (g is the directivity gain)
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(Katz et al,, 2005][5

e Typically requires an anechoic chamber (or that the direct path
response does not overlap with the first early reflection)

e Smaller static sources (e.g. loudspeakers) easier to measure

e CLF ™ or SOFA ! can be used to store and deliver directivity
data

De Sena, Hacthabiboglu, Cvetkovic

Tutorial: Interactive Room Acoustics Sy



(quora.com)

Occlusions occur when the line of sight is blocked
Sound waves can still travel around the edges: diffraction

Waves with larger wavelengths result in more energy diffracted
around the edge

Occlusions can be caused acoustically transparent materials
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Left figure adapted from (Torres et al,, 2001)®

e When a source is obstructed, diffraction component is the
earliest arriving wave

e Biot-Tolstoy-Medwin (BTM) model™ pravides a closed form
solution for infinite wedges
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Room Acoustics Synthesis

Perception of Room Acoustics
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Amplitude

... Early Reflections

Time

(Rational Acoustics)

1. Early reflections: affect spaciousness, envelopment, and
apparent source width.
2. Late reverberation: precise structure not important, but
2.1 Tho(w): affects impression of size
2.2 Echo buildup density: affects the perceived texture of
reverberation
2.3 Mode density: if insufficient can yield metallic sound
2.4 direct-to-reverberant ratio...
e Governed by complex and not fully understood perceptual
phenomeng!’® ™
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Perception of Early Reflections
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Precedence Effect

The first arriving sound wave dominates directional localization
and most of the localization information conveyed in the

reflections is suppressed
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Perception of Early Reflections

Image shift
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(i.e. echo)
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Perception of a single reflection incident from 40° azimuth with respect to the
frontal direct sound (Adapted from Barron, 197172)
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Perception of Reverberation

Bluriness Localisation Broadness Diffusion Source Size  Closeness Enviromental Depth

Surrounding
Effect
-+

Reverberance w=—"—8Room Gain

Immersion +---1 | Degree of Fullness
" Extend of Immersion

Feeling of. gpace Naturariness
Sense of Space Feeling of Presence

e
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e AIR in a room: LOS, early reflection and late reverb
e \Wave equation gives physical model for propagation

e Wave equation requires initial and boundary conditions to find
solution, and solution hard to find in closed form

e Solution for point-like sound source vields modal description of
reverberation

e Modes well separated at low frequencies

e Room perception governed by complex phenomena
e Accurate rendering of early reflections is important
e We are not sensitive to precise structure of late reverb
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Outline of the Section

Room Acoustics Synthesis

Room Acoustic Models

Tutorial:



Qverview

Convolutional (FIR)
IR
Common Acoustical Pole

Commercial reverb

Digital Feedback
waveguide Delay Networks
Networks (FDN)
(DWN)

Orthogonal Basis Function

Subband techniques

e Excellent overview paper of past 50+ years of artificial
reverberation by Valimaki et al.[® ™
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Qverview

Image Method
Ray-tracing

Wave-based models

Discretize wave equation in time/frequency and
space/boundary/volume

e £.g. FDTD" approx. derivatives with finite differences:

+1 -1
@ - p?,m,i = 2D i +pZm,i d%p N Pt mi — 2Pl Pl 1,mi
ot? T2 0z2

X2
e Convert wave equation into set of linear equations




Qverview

Scattering
Delay Networks)
(SDN)

Wave-based models

Discretize wave equation in time/frequency and
space/boundary/volume

e High physical accuracy...
e .but extremely high computational complexity




Please replace with:
https://www.youtube.com/watch?v=PoWpCC5KUMOo
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Qverview
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Geometrical acoustics models
Models approximating sound propagation using rays

e |Lower computational complexity...
e ,.but lower accuracy




Qverview

Delay Networks

Methods that do not physically model sound propagation in
rooms, but aim to create pleasing reverberant sound

e Very low computational complexity (historically first type of
artificial reverberators)...

e but no physical accuracy and no explicit physical modelling

Tutorial:



Qverview

Convolutional (FIR)
IR
Common Acoustical Pole

S:attenng
Delay Networks

Orthogonal Basis Function
Subband techniques

Measurement-based methods

Use measurements in real space to form parametric
representation of room acoustics

e E.g. convolutional (finite impulse response filter) model:
o Need to have access to physical space with desired characteristics
o Very high complexity (e.g. if F;, = 50 kHz, 760 = 2 s, 3 sound
sources and 2 output channels = 60 billion FLOPS
o FFT convolution is faster, if throughput delay is tolerable (and
there are low-latency algorithms)
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Qverview

Convolutional (FIR)
I

Delay ne pased
Schroeder reverb
Commercial reverb ¥ "

Digital _ Feedback
waveguide Delay Networks
Networks ~ (FON)
(DWN)

Common Acoustical Pole
Orthogonal Basis Function
Subband techniques

e Main reqguirements for XR:

o Low computational complexity

o As accurate as possible, either physically or perceptually
e Most suitable room acoustic models are:

o Geometrical acoustics methods (image method, ray tracing, beam
tracing)

o Delay networks methods (FDN, DWN, SDN)




Image
source

/'p
|
|
|
|
N . I
Wall :
|
Microphone Microphone !
|
o
Source Source

e \Wave propagation in half space is equivalent for:

1. source and wall
2. source and image source (no wall)

e Exact for rigid wall (Vp - n = 0)
e Approximation for non-rigid wall
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e With multiple reflectors: remove wall, mirror source and

opposite wall
y
o) o “O‘ o) “O
o o o o “j‘o
" >
o 8" o ‘j‘o

e Spatial periodicity of image sources can be exploited for fast
rendering in multiple positions!™

e Non-rectangular rooms also possible, but need expensive
computations of image source visibility!?®
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e Source emits rays in given number of directions

e Specular reflections; diffraction and scattering also possible
e Build RIR by recording time and amplitude at receiver volume
e Choice of receiver size and number of rays is critical

e Rays can be weighted/filtered according to source directivity
and wall absarption

“Receiver
i Refl 3

s == R
Odeon®1385-2004 Time ms>: 204
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Beam-tracing'®®

e Precalculate beam tree by intersecting environment polygons
(e.g. door w in figure) with the beam

e Precalculated beam tree depends only on source position
e For given observation point, lookup in tree and calculate paths

Tutorial:



Beam-tracing:

o fast rendering for moving observer

o requires recalculate tree if source moves (though recent
advancement reduce complexity®4

Ray tracing:

o Complexity can be controlled by number of rays
o Can model edge diffraction, scattering

o No guarantee of low-order reflections

Image Method:
o Buaranteed all reflections up to certain order present

o Preferred model to calculate early reflections
o High computational complexity for long RIRs

All above output an AIR, so still need to run convolution

If physical accuracy not needed, perceptual methods provide
better option
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Perception-based models

e Overview paper by Hacihabiboglu et al.®®!
e (Often separate modules for early and late reverb

(J. 0. Smith, https://ccrma.stanford.edu/ jos)

Desired qualities for late reverb:
Smooth decay: high reflection density
Smooth frequency response: high mode density

Moorer's ideal reverb: exponentially decaying white noise

Tutorial:



(Schlecht and Habets, 2017)[26]

e Generalization of Schroeder reverberator
(Stautner and Puckette, 1982) /]

e Design: start with lossless prototype (159 = oo) to obtain
noise-like reverb and add losses to obtain desired reverberation
time in each band
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e Jot and Chaigne (19971) 28

o Practical procedure to design delays and FDN matrix to obtain
desired echo density and frequency-dependent reverberation time
e Rocchesso and Smith (2002) 29
o Equivalence with DWN
o Circulant feedback matrix with increased efficiency
e Schlecht and Habets (2015, 2017) 130 31 281,
o Time-varying FDNs: reduce artifacts and obtain more lively
reverberation tail
o Unilosslessness: new definition of lossless FON matrix
o Closed-form and approximated formulas for echo density
o Procedure to design delays for desired mixing time

De Sena, Haclhabiboglu, Cvetkovi¢

Tutorial: Interactive Room Acoustics



Output
LOSSLESS 4 o OutP

DWN
99 P
m 5 (n,
ac O . Ve "
N ¢ ) )D/b =35y ily)
1507 ms & . P () + sy
N o Ss
I 70
nput @ s 4(n)
Fo=44.1 kHz

e
507 ms 7

e Network of bi-directional delay lines connected at scattering
junctions (Smith, 1985) 32

e Can be interpreted as network of acoustic tubes

e (Question: How to set parameters (delay line lengths, network
connections, scattering matrix..)?
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Scattering delay network (SDN)

e Design DWN based on characteristics of a physical room

e Position nodes at first-order reflection
points

e Fully connected DWN netwaork

e Mono-directional lines for
source-junction and junction-mic

Two interpretations:
Physical network of acoustic tubes
Approximation of image method/ray tracing

(De Sena, Hacihabiboglu, Cvetkavic, AES 20113 (IEEE/ACM TASLP 2015)34
(USPTO)E9!
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e Correct rendering of LOS and first-order reflections in time,

amplitude and direction

e Approximation of second and higher-order reflections, less

important perceptually

[5]

Source

Mic

L

Source

Mic.

Source

O
Mic.

L

[s]
|-order reflection
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e Correct rendering of LOS and first-order reflections in time,
amplitude and direction

e Approximation of second and higher-order reflections, less
important perceptually

[5] [s] [5]
Source Amo Souree
- T
o= =0
Mic. Mie. Mic.
5 5 )
|-order reflection II-order reflection Another ll-order reflection
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SDN: physical network of acoustic tubes

e Can be shown that SDN is a physically accurate model of a
network of acoustic tubes

room with source/observer network of acoustic tubes

e Actual room and network of acoustic tubes share a number of
perceptually important features (e.g. 760, echo buildup etc)




SDN performance

T6018]

e Higher perceived naturalness than FON and ray tracingt®®
e While orders of magnitude faster than (fft) convolution alone
e All parameters of model derived from physical properties

Advantages with respect to delay networks:
No need for hands-on parameters tuning
Physical interpretation = spatialisation possible

More elegant solution than separate early/late modules
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Please replace with:
https://youtu.be/1hdhhrM4juQ
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Please replace with:
https://www.youtube,.com/watch?v=AbLCJz640Lc
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Recent advancements in SDN
e Stevens et al. (2017) 7

o Extension to exact second-order reflections

o |Implementation of direction-dependent scattering (e.g. modelling
of trees)

o Modelling of outdoor scenes (sky absorbing nodes)
e Schlecht and Habets (2017) %%
o Showed scattering matrix is unilossless

(Stevens et al,, 2017)[26]
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e Wide variety of room acoustic models and simulators

e \Wave-based models: most accurate available but
computationally expensive

e Geometric-models: ray-like assumption, lower complexity but
also lower accuracy

e Perception-based models: very fast, attempt to reconstruct
only perceptually relevant features of reverberation

De Sena, Hacthabiboglu, Cvetkovic Tutorial: Interactive Room Ac



Binaural Rendering for XR
Binaural Rendering
Integration with Synthesized Room Acoustics in XR
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Outline of the Section

Binaural Rendering for XR
Binaural Rendering

Tutorial:



e To render binaural audio, we need to
model head diffraction, shadowing etc

e |n wave-based models, can be done
as part of the simulation, but
computationally expensive process

e |n other model classes: measured
responses from dummy heads

e Typically assumed far-field sound sources
(incoming plane waves)

e Results are direction-dependent filters
called head-related transfer function (HRTF)

e MIT KEMAR dataset®®®, cIPIC* and many
others.
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e |n sound synthesis we will have multiple incoming plane waves,
which can be:

o individual sound sources

o room reflections (typically only early reflections are rendered
binaurally)

e We know their directions: convolve with HRTFs and sum up
e Head tracking with HRTF update - latency < 85 ms

De Sena, Hacthabiboglu, Cvetkovic
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e All sources and reflections are rendered via a virtual
multichannel system

o The number of channels and HRTF filtering operations remains the
same regardless of the number of sources and reflections

o Each virtual loudspeaker is rendered via a pair of HRTFs

o Sources and reflections are rotated in the direction opposite of
head rotations — there is no need to update HRTFs

o N-th order Ambisonics — (N + 1)% channels

De Sena, Hacthabiboglu, Cvetkovic
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e HRTF filter design and interpolation
o Filter design via spectral smoothing!4% 4"
o Interpalation via manifold learning!4? 49
o Interpolation via SHDM

e HRTF individualization

CV based (Genelec™AurallD™, https://auralid.genelec.com)
o Sparse representationst#®’

o PCA-based!“®

o Deep-learning based 47 48

(0]
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https://auralid.genelec.com

Binaural Rendering for XR

Integration with Synthesized Room Acoustics in XR
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Overview of an Auralization Model

3D geometric model ~ Boundaries of the enclosure

of the enclosure and the enclosed planes
Listener and source Material properties
positions and look Reverberation characteristics

directions Source directivity patterns

-

Calculate valid and
visible image sources
and diffraction terms

Modeling

Direct path,

HRTF filter reflzz'rrli)zlms
HRTF filters interpolation| and edge’

diffraction
components

Artificial
reverberation

Tutorial: Interac Room Acous
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Interpolated
o TTTTTTTT serayiine

Absorption

Wall
Absorption

HRTF
Filtering




e Calculation of a high number of image sources at interactive
rates = Increased computational cost

e The interpolated delay line should be as large as the latest
arriving ER to be simulated = Increased memory footprint

e The number of reflections to be simulated determines the
number of filters to be used = Increased computational cost

e |nterpolation of all filters used in response to maving sources
or listener = Increased computational cost

e Quality of artificial reverberation determines the overall
experience = Perceptual quality depends on design choices

e OVERALL: Not a scalable approach!
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e Dynamic model relying on onset detection

e Uses a single, cascade FIR structure (per ear) to auralize the
LOS and the early reflections

e Onsets can be calculated offline
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Front
Primary suppressor

Left Right

Tertiary 5
suppressor " Secondary

suppressor

Back

e Early arriving sounds will suppress late arriving sounds
(Precedence effect)

e Cluster and select suppressor early reflections to be auralized
e Represent each cluster by the suppressor secondary source
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virtugl
Listener

Wall node

e Use pair of HRTF filters for each node-head connection

e Head tracking can be (almost trivially) integrated

e Simulation of source directivity involves weighting the output
to each delay line

e SDN is naturally bundling reflections (no need for culling)

e Fixed number of filters per wall (as opposed to direct

auralization)
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Please replace with:
https://www.youtube.com/watch?v=PmWTXWDQu5U
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Examples of open-source VR/AR Audio Rendering Software
Audio360
Resonance Audio
Steam Audio

Tutorial: Interactive Room Ac



== AUDIO 360

[Facebook]

e Multi-platform software for mobile and desktop devices:
o Windows, mac0S, Android, i0S

e Light weight SDK
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e Room simulation

o source directivity, spread
o distance attenuation curve options, min/max distance
o only early reflections are rendered assuming cuboid spaces
e room dimensions
e attenuation of reflections, i.e. wall absorption
o reflection order
o additional control of the level of early reflections
« high frequency room absorption
o possibility for combining with any late reverb plugin
o focus effects

e Auralization

o binaural rendering
o up to 3rd order Ambisonics transcoding
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Resonance Audio

[Resonance Audio, resonance-audio.github.io/resonance-audio/]
e Multi-platform software for mobile and desktop devices:
o Unity
o Unreal
o Wwise
o DAW
o Android
o i0S
e (Geared towards limited resources of mobile devices

Tutorial: Interactive Room Ac



e Room acoustics modelling
o source directivity controlled by two parameters:
e alpha - shape (cardioid, circular, figure eight)
e sharpness - width
distance attenuation of direct sound
early reflections rendered accurately
late reverberation rendered by "reverb engine”
occlusions and diffractions - smoothly-changing low-pass filter

o O O O

e Auralization

o binaural rendering
o up to 3rd order Ambisonics transcoding
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Use room model Don't use room model

[Resonance Audio, resonance-audio.github.io/resonance-audio/]

e Audio Rooms - early reflections and reverb
o input parameters

e room dimensions, cuboid rooms
o surface materials from a large bank
e brightness - high/low frequency balance to emulate empty/full rooms

o l|ate reverb changes in real time with room dimensions/materials
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[Resonance Audio, resonance-audio.github.io/resonance-audio/]
e Point source

o point directivity, distance attenuation, dynamic movement
o monophonic dry sounds

e Ambisonic sound fields

o react to head rotations only
o used for distant ambiance/atmosphere sounds

De Sena, Hacihabiboglu, Cvetkovi¢
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N

STEAM”

[credit wccftech]

e Multi-platform software for mobile and desktop devices:
o PC, mac0S, SteamOS Linux, Android
o Unity, Unreal Engine 4, FMOD Studio, C API, Wwise (soon)
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e (Custom HRTFs

e Gradation of rendering options
o Qcclusions - partial, frequency (in)dependent transmission,
o Acoustic materials - low/mid/high frequency, scattering
o Dynamic geometry - two ray tracing options

e High guality revereberation - high quality ray tracing

e Multi-core CPU and GPU acceleration
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e High quality reverberation custom presets

¢)

o O O O O

length of AIR

reflection order

number of rays in calculating AIR

number of secondary rays for diffuse reflections
maximal number of sources

CPU time (%) allocated for room simulation

e Optimized ray-tracing options:

(¢]

Intel” Embree - CPU optimized

o AMD Radeon Rays - GPU optimized

e AMD TrueAudio Next
SDK for accelerated GPU and multi-core audio
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Outline of the Section

Conclusions




e Physical room acoustic rendering provides high accuracy but
computationally very intensive, even in course approximations

e |everaging perceptual phenomena enables to reduce
complexity

e Hybrid (early reflections+artificial reverb) methods most
suitable for XR

e Recent developments in interactive room auralization (e.g. SDN,
source culling) promise increased auditory user experience in
XR without increasing complexity
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Acoustics of maze-like structures!®" 5%
e Room geametry estimationt®?

Computationally effective simulation of edge diffraction

Sound sourcet® and diffraction®™ culling
GPU-based processing!®®
Applications of deep learning in room acousticst™”
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e (Object-based audio (MPEG-H 3D Audio)
o Position dependent
o Fully compatible with 3DOF VR
o Parameterized representation of audio objects and reverberation
o Transcoding tools for channel-based (e.g. binaural), scene-based
(i.e. Ambisonics), and OBA representations
e Upcoming MPEG-I standard
o Based partly on MPEG-H
o 3D0F, 3D0F+ and 6D0F modes
o Work in (somewhat slow) progress
o Audio to accompany fully immersive 6D0F video
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Thank you!
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Questions?
Comments? -
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