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Objective

I Making listener feel transported to a different auditory scene,
which can be
I a real recorded one (live music performance, sporting event..)
I a virtual one (video games, VR/AR, architectural acoustics..)
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Physical and cross-talk cancellation methods

SFR Multichannel 2-Channel
Channel count 50+ < 10 2
Equipment Load High Commercially viable Low
Psychoacoustics None Required Critical
Sweet Spot Large Medium, small group Small, individual

I Sound Field Reconstruction (SFR) provide mathematically
elegant solution (e.g. HOA, WFS)...
I but large number of loudspeakers: r = c

f
N

2eπ , e.g.
f = 10 kHz, r = 0.1 m⇒ N = 56

I 2-channel (cross-talk cancellation) binaural methods, only two
channels...
I but small sweet spot (e.g. [Rose et al., 2002] report ≈ 3 cm)

I We’ll focus on multichannel systems with limited equipment
load, which need to leverage somehow psychoacoustics
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About this talk

I Interrupt me

I Just want to give main ideas

I Details and maths left to references (at the end)

I Will share slides (or find them later today at desena.org)
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Reproduction of a single plane-wave
I Let’s start from a simplified case

I Rendering a single plane-wave source

I Plane wave could represent e.g. single source or reflection

I (Multiple plane waves will use superposition)
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Reproduction of plane waves

I Assume for now that plane wave direction, θs , is known

I Relevant case for computer games, music post-production,
spatial audio objects (MPEG-H)

Objective–Reproduced plane wave should be:

1. perceived in correct direction (low localization error)

2. easy to localize (low localization uncertainty)

I in the largest possible area (large sweet spot)
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How many loudspeakers to use to reproduce plane wave?

I Question: how many loudspeakers should we use for a single
plane wave?

I Objective analysis in [De Sena et al., 2013] based on active
intensity vector field (direction of energy propagation)

I Spatial fluctuations increase with angle between loudspeaker
pairs

I Answer: use only the two loudspeakers closest to direction of
plane wave

I This reduces problem to good ol’ stereophonic reproduction
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Frequency-independent inter-channel differences

I What should we do with those two loudspeakers?

I Consider frequency
independent inter-channel
time differences (ICTD) and
level differences (ICLD)

I ICTD/ICLDs lead to low
coloration [Spors et al.,
2013], which is most
important attribute for sound
quality [Rumsey et al., 2005]

I As long as ICTD below echo threshold, listeners will perceive
a fused “phantom source” (summing localization effect)
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Position of phantom source
I Position of phantom source depends on ICTD/ICLD pair
I Same position can be achieved with different ICTD/ICLD pair
I One can use e.g. intensity only (most commercial sound

recordings), time only, or time-intensity

Adapted from [Williams, 2004]
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Not all ICTD/ICLD pairs are created equal
I ICTD/ICLD pairs lead to different localization uncertainty
I Computational model in [De Sena et al., 2020]:

I Inconsistent ICTD/ICLD lead to high uncertainty
I The vertical bands correspond to cases where 2 replicates at

one ear, but only 1 at the other
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Localization uncertainty in off-center positions

I Listener moves 10 cm to the right, then entire plot moves
(approximately) to the right

I Now intensity methods lie in area with high uncertainty!

I Time-intensity largely avoids this area
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What is happening?

I Useful to define “relative”
ICTD/ICLD as observed by
the listener:

RICLD ≈ ICLD− x

rl

20 sin
(
φ0
2

)
loge(10)

,

RICTD ≈ ICTD− x
2

c
sin

(
φ0

2

)
.

where c speed of sound

I E.g. consider ICTD = 0 ms and ICLD = 5 dB (left leading)

I RICTD = −0.29 ms and
RICLD = 4.78 dB, i.t.
contradicting

I Adding a small ICTD will
delay the onset of
contradictory RICTD/RICLD
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Parametrization of ICTD (time-delay microphone array)

I Convenient now to specify ICTD and ICLD functions of θs ,
including a parameter taking into account how much we rely
on ICLD compared to ICLD (time-intensity trade-off)

I Let the ICTD be defined
according to the delay that
would be observed on two
spatially separated
microphones as in figure:

ICTD(θs , rm) = 2
rm
c

sin

(
φ0

2

)
sin θs

where rm is the array radius
I This parametrization is convenient since it allows to easily

extend to the case of recording with circular arrays
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Parametrization of ICLDs

I Psychoacoustic curves give only extreme positions
I Could use different curves, for instance [De Sena et al., 2013]:

ICLD(θs , rm) = 20 log10

sin
(
φ0
2
+ β(rm) + θs

)
sin

(
φ0
2
+ β(rm)− θs

)
where β(rm) is a parameter used to fit the extrema

I With this parametrization, a higher rm leads to more reliance
on ICTDs and lower ICLDs
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Perceptual recording of a real sound scene

I Let’s move now to the case of recording a real acoustic scene
with multiple sources, reflections etc

I Now direction of sources/reflections is unknown
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To DOA or not to DOA

I Possible approach involves two steps:
I direction of arrival (DOA) estimation (its own field of research)
I take the signal and artificially add ICTD/ICLD
I This is the approach followed by many methods, as e.g.

Dirac/SDM/SIRR

I DOA estimation is not trivial and carries errors, especially for
short time windows

I Let’s try to use a different approach...
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How to bypass DOA

I Connect each microphone to a corresponding loudspeaker

I We already chose ICTDs parametrisation to be the delay
between two microphones

I The pair of microphones will have correct ICTDs by
construction (without need to know source direction)

I Microphone directivity pattern Γ(θ): sensitivity of microphone
as function of direction θ

I Use the directivity pattern to obtain desired ICLD(θs , rm)

I This process makes DOA estimation unnecessary!

I Rest of this section will describe this design process in more in
detail [De Sena et al., 2013]

21/54



How many loudspeakers in total?

I 5 channels: minimum for 360◦ perspective [Fletcher 1953]

I 5 channels: minimum for envelopment [Ando et al. 1986]

Perceptual Soundfield Reconstruction (PSR) Array [Johnston
et al., 2000]

I 5 channels, uniformly distributed

PSR Microphone Array

15.5 cm
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First design step – # constrain only 2 loudspeakers active

How to have only 2 loudspeakers active for each wave?

I Design microphone directivity pattern Γ(θ) such that it does
not pick up directions beyond neighbouring microphone

15.5 cm

Γ(θ) =

{
0 θ /∈ [−φ0, φ0]
? θ ∈ [−φ0, φ0]

where φ0 is angle between
microphones

I From here on we consider microphone pairs

I Design Γ(θ) for θ ∈ [−φ0, φ0] to capture required
(ICTD,ICLD) pairs
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Second design step – polar pattern

I We know from earlier closed form expression for ICLD(θ, rm)

I The relation that connects ICLD and directivity patterns is

ICLD(θ, rm) = 20 log10
Γl+1(θ)

Γl(θ)

with Γl+1(θ) and Γl(θ) polar patterns of adjacent mics

I We have 1 equation but 2 unknowns

I Add constraint Γ2
l+1(θ) + Γ2

l (θ) = 1 for equal loudness
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Second design step – polar pattern (cont’d)

Summary of first and second design steps

I Putting together ICLD(θ, rm) = 20 log10
Γl+1(θ)

Γl (θ) (TID) and

Γ2
l+1(θ) + Γ2

l (θ) = 1, and symmetry across microphones:

Γ(θ) =


[

1 +
sin2 (θ + β(rm))

sin2 ((φ0 + β(rm))− θ)

]−1/2

θ ∈ [0, φ0][
1 +

sin2 (β(rm)− θ)

sin2 (θ + (φ0 + β(rm)))

]−1/2

θ ∈ [−φ0, 0]

0 elsewhere

I We can still choose rm: higher rm leads to larger ICTDs
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Third design step – array radius
I We saw earlier: larger ICTDs lead to larger sweet spot

I Where do we stop? Two vertical bands in figure

I Array radius such that panning curve end-point touches
vertical band [De Sena et al., 2020]:

rm ≈ rh
cos
(
θe − φ0

2

)
+ φ0

2 + θe − π
2

2 sin2
(
φ0
2

)
I For rh = 9 cm and 5 loudspeakers, optimal radius rm ≈ 15 cm.
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Microphone directivity that approximates ICLD(θs , rm)

I Now we have the entire design: microphone positions,
orientations and directivity pattern Γ(θ)

I Are we done? No... there is no microphone that can
implement exactly Γ(θ), but we can get close enough

I Second and higher-order microphones, e.g. differential mics
[De Sena et al., 2012], Eigenmike [Elko and Meyer], or
filter-and-sum beamformers can be used for this purpose

−20 dB

−15 dB

−10 dB

−5 dB

0 dB

30

210

60

240

90

270

120

300

150

330

180 0

 

 
6th order approximation
2nd order approximation
Time−intensity ideal (0.155 m)

27/54



Subjective listening tests and extensions

Subjective listening tests [De Sena et al., 2013]

I Similar performance to second-order Ambisonics and VBAP in
sweet-spot centre

I Lower uncertainty in off-centre positions

Current work and extensions
I PSR recently extended to third dimension using extrapolation

from Eigenmike [Erdem et al., 2019]

I Time-intensity in the vertical dimension leads to a perceived
improvement in stability of sweet spot [Andrew-Jones, 2019]

28/54



Outline

Introduction

Perceptual Soundfield Reproduction

Perceptual Soundfield Recording

Perceptual Simulation of Room Acoustics
Image method and how to avoid sweeping echoes
Scattering delay network (SDN)

Summary of contributions

29/54



Perceptual Simulation of Room Acoustics

1. Simulate virtual room acoustics

2. Virtual recording and real reproduction (simulate microphone
array as described in first part of talk)
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Overview

Convolutional (FIR) Ray-tracing
Image Method

Common Acoustical Pole

Orthogonal Basis Function

IIR 

Subband techniques 

Beam-tracing Scattering
Delay Networks

(SDN)

Bounday Element Method

Feedback 
Delay Networks

(FDN)

Digital 
waveguide 
Networks

(DWN)

Finite Volume Method

Schroeder reverb
Commercial reverb

Digital Waveguide Mesh

Finite-di�erence Time-Domain

Physical-based

Delay networks

M
ea

su
rement-based

Geometrical acoustics

Wave-based

I Overview of more than 50 years of room acoustic simulation
in [Välimäki et al., 2012], [Välimäki et al., 2016] and
[Hacıhabiboğlu et al., 2017]

I Wave-based models are the most accurate ones
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Rendering of dynamic scenes with wave models

I In a complete wave model of a room:
I sources and listeners can be moved
I spatialized using microphone arrays or “virtual dummy head”

Example: How expensive is a wave-based model?

I Audio bandwidth = 20 kHz ≈ 1.27 cm wavelength

I Spatial samples every 0.63 cm or less

I 3.65× 5.8× 2.4 m room requires > 200 million grid points

I 3D finite difference model requires one multiply and 6
additions per grid point ⇒ 70 billion FLOPS at Fs = 50 kHz

I 30× 15× 6 m concert hall requires > 3 quadrillion FLOPS
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Image method for single reflector

Source

Wall

Microphone

Source

Image
source

Wall

Microphone

I Wave propagation in half space is equivalent for:

1. source and wall
2. source and image source (no wall)

I Exact for rigid wall (∇p · n = 0)

I Approximation for non-rigid wall
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Image method for rectangular room

I With multiple reflectors: remove wall, mirror source and
opposite wall

I Rectangular room: proven to be solution of wave equation for
rigid walls [Allen and Berkley, 1979]

I Non-rectangular rooms also possible, but need expensive
computations of image source visibility [Borish 1984]
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Sweeping echoes in image method [De Sena et al., 2015]

I Perfectly rectangular rooms cause so-called sweeping echoes

I Regular simulation setups yield stronger sweeping echoes
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Cause of sweeping echoes

I Due to orderly alignment of images along 3 axes

I Pairs get closer like 1/t, thus freq. resp. stretches with t

I Does not happen in most real rooms due to small
imperfections
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How to avoid sweeping echoes

I Choose non-regular setup, e.g. random, or...

Randomized Image Method

I Small random displacement of images

I Uniform in ±8 cm sufficient to remove completely

I Same complexity of rectangular image method
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Rendering of dynamic scenes with geometric models

I Even then, we still need to

1. recalculate RIR when moving source/observer
2. run a convolution (computationally expensive for real-time

applications)

I If physical accuracy not needed, perceptual methods provide
better option
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Room acoustics perception

RIR components:

I Direct line-of-sight

I Early reflections: important for perception of size and shape

I Late reverberation: important for envelopment and perception
of size; we are not sensitive to exact structure

I Echo density has to be high enough for perceived texture

I Mode density high enough so that it is not metallic
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Digital waveguide networks (DWN)
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I Network of bi-directional delay lines connected at scattering
junctions [Smith, 1985]

I Can be interpreted as network of acoustic tubes

I Question: How to set parameters (delay line lengths, network
connections, scattering matrix..)?
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Scattering delay network (SDN) [De Sena et al., 2015]

I Design DWN based on characteristics of a physical room

I Position nodes at first-order reflection
points

I Fully connected DWN network

I Mono-directional lines for
source-junction and junction-mic
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SDN: approximation of geometric acoustics

I Correct rendering of LOS and first-order reflections in time,
amplitude and direction

I Approximation of second and higher-order reflections, less
important perceptually

I-order reflection II-order reflection Another II-order reflection
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SDN: approximation of geometric acoustics

I Correct rendering of LOS and first-order reflections in time,
amplitude and direction

I Approximation of second and higher-order reflections, less
important perceptually

I-order reflection II-order reflection Another II-order reflection
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SDN: alternative interpretation

I Can also be interpreted as model of network of acoustic tubes
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Advantages

I Also, not shown here:
I similar frequency-dependent RT60 to full-scale models
I similar echo density to full-scale models
I sufficient modal density
I axial resonant modes of room well approximated

I Orders of magnitude faster than FFT convolution (alone!)

I All parameters of model derived from physical properties
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Perceptual evaluation [Djordjevic, 2019]

I Headphone-based (binaural) comparison (28 subjects)

I Higher pleasantness (p < 0.001) and naturalness (p < 0.001)
than comparable delay-network based method
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Comparison of SDN-IM-FDTD

See https://youtu.be/1hdhhrM4juQ
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Recent advancements in SDN

I Stevens et al. (2017):
I Extension to exact second-order reflections
I Implementation of direction-dependent scattering (e.g.

modelling of trees)
I Modelling of outdoor scenes (sky absorbing nodes)

I Schlecht and Habets (2017):
I Showed scattering matrix is “unilossless”

I SCReAM (SCalable Room Acoustics Modelling): £407k
EPSRC project, hiring 3-year postdoc (deadline 16 Nov)
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Contributions

Recording and reproduction

I Consistent ICLD/ICTD pairs ⇒ sources easier to localise

I Small ICTDs ⇒ larger sweet spot by delaying occurrence of
inconsistent ICLD/ICTD pairs

I Beamforming used to bypass need for explicit DOA estimation

Room Acoustics Simulation
I When using image method, beware of sweeping echoes

I SDN is simple/fast network of delay lines that renders
accurately what is more important perceptually

I Orders of magnitude faster than convolution (alone!)

I That’s all folks! :) Questions?
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